
ACT Lab

Efficient Live Snapshot for Virtual Machines:
A Multi-layer Coordination Approach Jingsheng Zheng, Jianxin Li, Lei Cui, Yangyang Zhang

 School of Computer Sci&Eng, Beihang University
Introduction

System Architecture and Design Details

Evaluation

Goal:
 - Reduce the snapshot size, thus reduce the
snapshot duration as well as the occupied
storage space
 - Mitigate VM performance loss

Approach: - I/O tracking: detect cache pages whose
contents are duplicated on disk
 - Copy-on-Write based snapshot:
save memory pages on demand and only once
 - Asynchronous compression: avoid large
amounts of I/O operations

1. Cache Page Detection (CPD): - Track the I/O operations and
maintain a mem-disk map to
indicate pages whose contents are
duplicated on disk
 - Exclude the pages valid in
mem-disk map when taking
snapshots

2. COW-based snapshot:
 - Guarantee insignificant downtime
and short duration
 - Start snapshot and suspend VM:
 A series of lightweight operations
 - Resume VM and save memory
pages:
 Overlap the actual memory
saving with the VM running period
 - Snapshot completed.

Virtual Machine Live Snapshot: :
 - High availability,
 - Disaster recovery
 - Debugging
 - System administration

Problems Statement:
 - Long downtime: large memory size
 - Long duration: large memory size and write-
intensive workload
 - Significant performance overhead: I/O
contention between the snapshot process and the
applications inside VM

1. Experiment Environment:
 - Host Machine: 16 CPU 48GB memory
Intel Xeon 2.4GHz
 - Virtual Machines: 2GB memory
 - Workload: Kernel Compilation

2. Performance
 - Run the Kernel Compilation workload in the VM until all memory is used, and then take several snapshots at
80-second intervals
 - We measure the VM performance in terms of the Compilation time.
 - Conclusion: COW-based method can balance the VM downtime and snapshot duration; Asynchronous
Compression can further decrease the performance overhead; Cache Page Detection contributes to the
reduction of both duration and performance overhead significantly.

3. Asynchronous Compression
(AC):
 - Compress pages before
flushing them to disk, avoiding
large amounts of I/O operations,
thus reducing the I/O contention
 - Adaptive multi-thread
technique to parallelize the
compression tasks

cache
pages
72%

other
pages
28%

Result of Cache Page Detection

Design Principle:

0
10
20
30
40
50
60
70
80

(s
ec

on
ds

)

Snapshot duration

No Snapshot
Qemu-kvm (stop-and-copy)
Pre-copy based
COW-based
AC (3 threads)
AC (4 threads)
CPD
CPD + AC (3 threads)
CPD + AC (4 threads)0

0.5

1

1.5

2

2.5

Normalized Compilation Time
(Overhead)

Downtime

This work is supported by the 973 Program (No.2011CB302602), NSFCPrograms (Nos. 91118008, 61202424), China MOST grant (No. 2012BAH46B04), 863 project (No.2013AA01A213),
NewCentury Excellent Talents in University 2010 and SKLSDE-2012ZX-21.

Efficient Live Snapshot for Virtual Machines: A Multi-layer Coordination Approach
Jingsheng Zheng1, Jianxin Li, Lei Cui1, Yangyang Zhang1

School of Computer Sci&Eng, Beihang University, {zhengjs, lijx, cuilei, zhangyy}@act.buaa.edu.cn

1 Students; Jingsheng Zheng will present. We can demo our system.

Motivations: As virtualization technology has
become one of the cores of cloud computing systems,
the reliability of the data and services hosted in a
virtual machine (VM) becomes a top concern. Live
Snapshot is a prevalent technique to provide
protection for running systems by saving the running
state of the VM to persistent storage. The mainstream
virtualization solutions, e.g. KVM, Xen, VMware,
provide snapshot technique in a stop-and-copy manner,
which results in long and unacceptable VM downtime.
Another approach is based on the pre-copy [1]
mechanism. Although VM downtime is reduced, this
method may incur longer duration particularly for
write-intensive workloads. There are also some works
to achieve fast snapshot [2]. However, these methods
only consider one aspect of the snapshot process, and
the applications inside the VM suffer from
performance degradation significantly.
Design: Our key idea is to divide the whole snapshot
process into three layers: Detection Layer, Snapshot
Layer and Flushing Layer. Each layer concentrates on
one specific purpose, and then they coordinate
together to achieve efficient live snapshot without
compromising VM performance.

Since the memory size of VM is always up to
several GBs, saving the entire memory pages results
in long duration and significant performance
degradation. Therefore, in the Detection Layer, we
deal with the entire memory pages to obtain a subset
containing the pages which must be saved, so that the
other pages can be eliminated when taking snapshots.
Generally, the pages which can be discarded mainly
involve the cache pages, which contain data that have
been recently read from block devices. Namely, the
cache pages are already present on external storage.
By this pre-processing, the amount of the memory
pages to be saved is reduced, which decreases the
snapshot duration as well as the VM performance
degradation. In the Snapshot Layer, we take snapshot
based on the memory subset, and save the pages to a
temporary buffer. Since the snapshot process mainly
occupies I/O resources, the applications inside the VM
can be affected significantly during the snapshot
process, especially for the I/O-intensive applications.
We solve this problem in the Flushing Layer, where a
daemon running in the background to process the
pages in the buffer to further reduce the data size to be
flushed to the disk. Data compression is a good choice
because D. Gupta et al. indicates that even if several
VMs reside on a same multi-core machine, CPU

resource is still rich because physical CPUs are
frequently amenable to multiplexing [3]. We can
exploit the abundant CPU resources to compress the
memory pages before flushing them to the disk, thus
avoiding the I/O contention.

In our system, we track the I/O operations of the
guest to external storage and maintain a mem-disk
map to indicate pages whose contents are duplicated
on disk in the Detection Layer. The mem-disk map is
indexed by the memory pages’ PFN (page frame
number), and each entry consists of the corresponding
disk block number and a valid flag. We validate (or
invalidate) an entry when trapping an I/O request (or a
write-protection fault), so the valid entry in the
mem-disk map corresponds to the redundant data.

In addition, we adopt the Copy-on-Write (COW)
based snapshot mechanism in Snapshot Layer to
guarantee insignificant downtime and short duration.
We suspend the executing VM immediately when
taking snapshot, followed by a series of operations,
mainly involve setting all memory pages
write-protected. All these operations are lightweight
enough so that the VM downtime can be insignificant.
Then we resume the VM, and save memory pages
passively when intercepting write-protection faults or
other memory writes such as DMA operations, while a
background thread saves memory pages actively at the
same time. We copy all the memory pages only once,
resulting in a short duration.

In the Flushing Layer, once the buffer is not empty,
the daemon fetches the memory pages from the
Shared Buffer Pool and compresses them, followed by
flushing the compressed data to the disk. In addition,
we adopt multi-thread technique to parallelize the
compression tasks to reduce the duration.
Evaluation: We measure the snapshot duration and
performance overhead under the Kernel Compilation
workload. Compared to the implementation in
qemu-kvm (stop-and-copy mechanism), our system
can reduce the duration about 69.5% while the
downtime is within milliseconds, and the VM
performance overhead is reduced up to 93.6%.
Compared to the pre-copy method, the values are 88.4%
and 80.2% respectively.
References:
[1] Clark, C., et al. Live migration of virtual machines. NSDI'05.
[2] Park, E., et al. Fast and space-efficient virtual machine checkpointing.

ACM SIGPLAN Notices. 2011.
[3] Gupta, D., et al. Difference engine: Harnessing memory redundancy in

virtual machines. Communications of the ACM. 2010.

	Efficient Live Snapshot.v3
	幻灯片编号 1

	Efficient Live Snapshot.v3
	Motivations: As virtualization technology has become one of the cores of cloud computing systems, the reliability of the data and services hosted in a virtual machine (VM) becomes a top concern. Live Snapshot is a prevalent technique to provide protec...

